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ABSTRACT
Variability modelling with feature models is one key tech-
nique for specifying the problem space of software product
lines (SPLs). To allow for the automatic derivation of a
concrete product based on a given variant configuration, a
mapping between features in the problem space and their
realisations in the solution space is required. Ensuring the
correctness of all participating models of an SPL (i.e., fea-
ture models, mapping models, and solution-space models)
is a crucial task to create correct products of an SPL. In
this paper we discuss different possibilities for checking well-
formedness of SPLs and relate them to their implementation
in the FeatureMapper SPL tool.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering, Object-orien-
ted design methods; D.2.2 [Software Engineering]: Soft-
ware/Program Verification—Validation; D.2.13 [Software
Engineering]: Reusable Software

General Terms
Design, Languages

Keywords
Software product lines, separation of concerns, variability
modelling, well-formedness rules, FeatureMapper

1. INTRODUCTION
A software product line (SPL) is a set of software-intensive

systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way [4]. In addition to the shared core
assets, every system of a SPL has features that are specific
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to the system and that are not shared by all other systems
(often called products) of the SPL. To express this variabil-
ity, variability modelling is used to describe the different
features available in an SPL and their interdependencies. In
the Feature-Oriented Software Development (FOSD) com-
munity [2], a widely used approach for variability modelling
are feature models [13, 5].

Feature-based variability modelling resides in the problem
space whereas the realisation of features is part of the solu-
tion space [6]. To instantiate products from an SPL, feature
realisations in the solution space have to be configured ac-
cording to the presence of the features in a variant model ;
that is, a concrete selection of features from a feature model
that describes a product of the SPL. This requires a map-
ping between features from a feature model and solution-
space models or modelling artefacts that realise features (or
combinations of those). We focus on model-driven devel-
opment of SPLs in this paper and refer to solution-space
models that are expressed by means of Ecore-based meta-
models. To achieve the required mappings, a number of dif-
ferent approaches have been proposed [5, 9, 12] which allow
for creating mappings between features from feature models
and solution-space models.

While all of the approaches provide means for creating and
maintaining required mappings, ensuring the well-formed-
ness of all input models (i.e., feature models, mapping mod-
els, and solution-space models) and all possible output mod-
els (i.e., solution-space models transformed based on feature
selection) is a challenging task often neglected in the afore-
mentioned approaches. In this context, by well-formedness
is meant the conformance of a given model with constraints
of the underlying metamodel. Note, that well-formedness
goes beyond syntactical correctness in the sense that it also
takes additional constraints into account that are not di-
rectly expressed in the language’s metamodel. Also, creating
syntax errors in modelling languages is usually not directly
possible, since modelling editors work on a different level of
abstraction, where it is impossible to create model elements
that do not conform to the concrete syntax of the modelling
language. To give examples of models, which do not respect
well-formedness rules and are, hence, invalid:

• A feature model can become invalid because of con-
tradicting cardinalities, that is, if cardinalities of child
features do not comply with the cardinality of their
parent feature (e.g., an alternative feature where child
features are mandatory).

• A mapping can reference invalid or non-existing model



elements, e.g., model elements that were removed or
changed due to refactoring of the problem space or the
solution space.

• An output model can be ill-formed due to mappings
that do not take into account the constraints of the
language used for modelling the solution space.

We argue, that for creating valid products of an SPL,
the well-formedness of input and output models needs to be
ensured in a systematic way and, possibly, (automatically)
validated during modelling the SPL.

In this paper we discuss well-formedness of the different
participating models in an SPL and present possibilities for
ensuring the well-formedness of those models. Furthermore,
we want to foster discussion of open and not yet addressed
issues in well-formedness of SPLs motivating the FOSD com-
munity to address them in their research and development.
During discussion of the identified possibilities for validation
we refer to their realisation in the FeatureMapper [12, 21]
SPL tool.

The rest of the paper is structured as follows: We intro-
duce our tool FeatureMapper in Sect. 2 and provide neces-
sary context. In Sect. 3 we discuss various possibilities for
validating and enforcing well-formedness in SPLs and re-
late them to their implementation in FeatureMapper. We
present open issues and possibilities for further research and
development in Sect. 4 and refer to related work in the FOSD
community in Sect. 5. Section 6 concludes the paper.

2. BACKGROUND
FeatureMapper [12, 10, 21] is an Eclipse-based tool that

allows for mapping features from feature models to arbitrary
modelling artefacts that are expressed by means of an Ecore-
based language [19]. These languages include UML2 [15],
domain-specific modelling languages (DSLs) defined using
the Eclipse Modelling Framework (EMF) [19], and textual
languages that are described using EMFText [11]. The map-
pings can be used to steer the product-instantiation process
by allowing the automatic removal from the final product
being generated of modelling artefacts that are not part of
a selected variant.

An overview of defining an SPL and deriving a concrete
product in FeatureMapper is shown in Fig. 1. To associate
features or logical combinations of features (feature expres-
sions) with modelling artefacts, the developer first selects
the feature expression in the FeatureMapper and the mod-
elling artefacts in her favourite modelling editor (e.g., TOP-
CASED [22]). Next, she applies the feature expression to
the modelling artefacts via the FeatureMapper user inter-
face (Step 1). During product derivation, this mapping is
interpreted by a FeatureMapper transformation component.
Depending on the result of evaluating the feature expression
against the set of features selected in the variant (Step 2),
the modelling elements are preserved or removed from the
model (Step 3). Model elements that are not mapped to
a specific feature expression are considered to be part of
the core of the product line and are always preserved. In
addition to product derivation, the mappings are used for
visualisation purposes [10].

FeatureMapper uses cardinality-based feature models [7].
These models are instances of an Ecore-based feature meta-
model. Features from these feature models are related to

Figure 1: Workflow of defining an SPL and deriving
a concrete product with FeatureMapper.

solution-space models through a dedicated Ecore-based map-
ping model. As depicted in Fig. 2, a mapping in this map-
ping model basically consists of a feature expression (Ex-
pression, which directly references features from the fea-
ture model or logical combinations of those) and a reference
to a solution-space artefact (EObject).
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Figure 2: Simplified overview of FeatureMapper’s
internal mapping metamodel.

3. WELL-FORMEDNESS IN SPLS
As motivated in Sect. 1, ensuring well-formedness of all

participating models is crucial in SPL to ensure the valid-
ity of the resulting products. Thus, validation of all models
used for creating an SPL is needed. This includes validation
of problem-space models, validation of mapping models, and
validation of all possible solution-space models. In this sec-
tion we give an overview of various possibilities for validation
and relate them to their implementation in FeatureMapper.
Our enumeration of possible validation tasks is by no means
exhaustive; rather, it is expected to be extended as a result
of future discussions.

3.1 Well-formed problem-space models
Cardinality-based feature models and variant models [7]

include a set of well-formedness rules that need to be en-
sured for producing valid feature models. These rules are
normally enforced by the feature-modelling tool used for
producing the feature models and the variants. While Fea-
tureMapper supports feature models and variant models of
the feature-modelling tools pure::variants [3] and fmp [1], it
also provides basic means to create those models, and thus,
needs to ensure their validity.

FeatureMapper currently imposes the following constraints
on feature models:



FM-Mandatory-Root The root feature must be manda-
tory. This constraint prohibits the creation of empty
products by enforcing the inclusion of the root feature
in any possible variant.

FM-Cardinality-Match Cardinalities of child features must
comply with the cardinality of their parent feature.
This constraint ensures that no contradicting cardi-
nalities exist between child features and their parent
features (e.g., an alternative feature that has manda-
tory child features).

FM-Sound-Reference References such as requires or con-
flicts must be non-contradicting. This constraint
also includes the parent-child relationship between fea-
tures during validation.

FM-Existing-Reference Referenced features must exist.
This constraint ensures that any of the referenced fea-
tures in requires or conflicts references are features
in the feature model.

Variant models are seen as a subset of feature models in
FeatureMapper. For ensuring valid variant models, the fol-
lowing constraints are enforced:

VM-Mandatory-Parent If a child feature is selected, the
parent feature must be selected too.

VM-Mandatory-Child If a feature is selected, all its man-
datory child features must be selected too.

VM-Alternative If an alternative feature (a parent fea-
ture with a cardinality [0..1]) is selected, at most
one of its child features must be selected.

VM-Or If an Or feature (a parent feature with a cardinality
[n..m]) is selected, at least n and at most m of its child
features must be selected.

VM-Requires If the selection of a feature requires the se-
lection of another feature, the latter feature must be
selected too.

VM-Conflicts If the selection of a feature excludes the se-
lection of another feature, the former feature cannot
be selected.

Due to the added complexity involved when validating fea-
ture references (cf. constraints FM-Sound-Reference, VM-
Requires, VM-Conflicts listed above), we enhanced our ini-
tial OCL-based approach for validating feature models and
variant models in FeatureMapper to an Web Ontology Lan-
guage (OWL) based approach similarly to what is described
in [23]. This validation is exposed as a validator to the EMF
Validation Framework. Additionally, FeatureMapper checks
for invalid feature combinations while creating feature ex-
pressions and reports possible violations of the constraints
listed above to the user.

3.2 Well-formed mapping models
Mapping models are models that relate features from fea-

ture models to their realisation in solution-space models.
This mapping works directly on the referenced objects and
not only on symbolic representations. Since FeatureMapper
intentionally uses a generic mapping model to be indepen-
dent of the modelling languages used, there exist basically
two well-formedness rules that need to be ensured while cre-
ating and managing a mapping model:

MM-Existing-Feature Referenced features of a mapping
must exist.

MM-Existing-ModelElement Referenced solution-space
artefacts of a mapping must exist.

FeatureMapper ensures these constraints automatically dur-
ing loading and saving of mapping models. If a constraint vi-
olation is detected, FeatureMapper informs the modeller and
provides interactive means for correcting the model. Thus,
FeatureMapper prohibits the creation of invalid mapping
models. Note, that this does not imply the well-formedness
of the solution-space models which will be addressed in the
next subsection.

3.3 Well-formed solution-space models
The most challenging task in creating model-based SPLs

is to ensure that all output models conform to the well-
formedness rules of the language used for creating the solu-
tion-space models. In FeatureMapper, model elements are
removed from the model during product derivation if the
corresponding feature expression in the mapping does not
evaluate to true against a given variant model. Checking
the well-formedness of a output model is usually done by
evaluating OCL constraints on the output model. For an
SPL this would imply that any possible variant needs to be
created to ensure the well-formedness of the complete SPL.
This is not feasible because of the large amount of possible
variants that can be created out of an SPL [16]. We focus on
checking the well-formedness of an SPL, not its individual
products. This includes the following constraint classes:

SM-Multiplicity Multiplicities of modelling artefacts must
match the multiplicities of the respective constructs
described in the metamodel of the language used for
modelling the solution-space models.

SM-Typing Solution-space models must conform to the
modelling language’s type system.

SM-Semantics Solution-space models must conform to spe-
cific semantic constraints exposed by the used mod-
elling languages which do not fall in any of the afore-
mentioned classes. This also applies to domain-specific
languages, which can imply constraints on solution-
space models that are intrinsic to a specific domain.

To our knowledge, there currently exists no approach that
allows for ensuring constraints of all three constraint classes
for models created in arbitrary Ecore-based modelling lan-
guages. In [8], Czarnecki and Pietroszek presented an ap-
proach for verifying feature-based model templates against
well-formedness OCL constraints. In their work, they de-
scribed how the well-formedness of UML models annotated
with stereotypes containing feature expressions (so-called
presence conditions) can be ensured for all possible variants
of an SPL without creating any of those variants. They de-
scribed how OCL well-formedness rules can be interpreted
in a way that takes the feature expressions into account and
provided a set of evaluation patterns for various OCL con-
structs in form of propositional formulas.

While this approach and its implementation only addresses
well-formedness rules of UML, well-formedness rules differ
significantly depending on the modelling languages used.
E.g., in UML each DecisionNode in an activity model must



at least have one outgoing edge whereby the guards on the
outgoing edges need to be unambiguous—otherwise a race
condition may occur (cf. constraint-class SM-Semantics).
Figure 3 depicts a part of an example activity diagram from
a recent case study we performed in FeatureMapper, where
modelling elements are coloured according to the feature ex-
pression assigned to them. The outgoing edge coloured in
red is removed whenever the respective features are not part
of the given variant. The same applies to the outgoing edge
coloured in blue.

Figure 3: Example of an ambiguous activity model
with two outgoing edges with the same guard con-
dition.

Another example is, that an Association must have at
least two memberEnds (cf. constraint-class SM-Multiplicity).1

The detail of the class model depicted in Fig. 4 shows an
Association where this constraint is not fulfilled in case the
class Blanket is removed from the model. Of course, fixing
those errors can be fairly easy (in this case the association
needs to be removed too) but detecting those errors is a
task that is not easy to perform, especially when considering
cross-model constraints (e.g., each method called in a UML
activity model must exist in a related UML class model;
cf. constraint-class SM-Typing).

Figure 4: Example of a possible violation of the well-
formedness rules of the UML Association concept.

Similarly to the Association in UML, the eReference-

Type of an Ecore EReference must exist. The specifica-
tions [15, 19] contain numerous well-formedness rules based
on multiplicities and OCL constraints. Presenting all of
those is beyond the scope of this paper. In addition to es-
tablished and widely-used modelling-languages, the trend
towards defining and using DSLs in model-driven develop-
ment results in numerous new languages, where each of those
languages has their own set of well-formedness rules. For ex-
ample, a language for creating forms can include the concept
of depending questions (i.e., a question only has to be an-
swered if a specific other question has been answered). This
again involves the concept of references, where each of the
referenced questions in a form description must exist.

1This is the running example of Czarnecki and Pietroszek
in [8].

We are currently investigating possible extensions to Fea-
tureMapper for a modelling-language independent realisa-
tion of checking the entire SPL. Since FeatuerMapper is in-
tentionally agnostic to the modelling-languages used, any
existing Ecore-based modelling-language can be used for cre-
ating solution-space models. This also means that the well-
formedness rules of these different languages need to be en-
sured for each particular language to be supported. Our aim
is at creating a generic framework that can be parameter-
ized with those language-specific rules. To this end, ensur-
ing well-formedness of SPLs built of arbitrary Ecore-based
modelling languages becomes possible.

4. DISCUSSION
An open issue in ensuring well-formedness of SPLs is the

lack of completeness of formally described well-formedness
rules. The UML specification contains a lot of explicitly de-
scribed multiplicities, well-formedness rules, and additional
constraints but also contains implicit information (e.g., the
need for unambiguousness of multiple outgoing edges on De-

cisionNodes as described in Sect. 3). To our knowledge,
no catalogue of formalised descriptions (e.g., described us-
ing OCL) of those well-formedness rules exists at the mo-
ment. Even current modelling tools have a fairly relaxed
interpretation of those rules and effectively allow for cre-
ating ill-formed models. Creating a complete catalogue of
those well-formedness rules seems to be a complex but also
very profitable task, because to this end, checking the well-
formedness of all participating models of a given language
is possible. To extend this idea, having such catalogues
for different languages can foster reusing certain rules that
are shared across languages whenever language semantics
are appropriate. This is especially promising for model-
driven development including multiple DSLs, where certain
domain-specific constraints need to be ensured across lan-
guage boundaries.

There exist a whole range of opportunities for performing
additional checks on SPLs that go beyond well-formedness
rules. Possible checks include detection of bad smells, i.e.,
violations of modelling conventions. Examples of those are
direct communication between components instead of using
dedicated interfaces in component models, huge inheritance
hierarchies, or strong coupling of classes in class models.
Possible extended checks on problem-space models can in-
clude ensuring that all features of a given feature model
are actually mapped to solution-space artefacts (i.e., ensur-
ing that there exists a realisation of a given feature in the
solution-space models).

An open issue of ensuring the validity of an SPL based on
different interpretation of OCL well-formedness rules is the
performance of checking all propositional formulas. As de-
scribed by Czarnecki and Pietroszek [8], checking those rules
cannot be instantly performed due to the processing time
of creating and checking those rules (in their experience,
checking is performed in terms of seconds rather than mil-
liseconds). Possible enhancements are incremental checks,
where the engine detects which constraints and which parts
of a model need to be verified in case of changes in the par-
ticipating models. Another implication of the approach is
the semantics of the mapping. It seems that this approach
is feasible for mappings that relate to modelling artefacts
and remove those depending on a given feature selection.
Approaches that apply complex transformations based on



feature selection actually change the model in ways that are
not easily verified using propositional formulas. Further re-
search in this direction is needed.

Another widely unexplored field—which is not addressed
in this paper—is detecting semantic errors for all products
of an SPL. Since it is already difficult to ensure the seman-
tic correctness of a single product, checking the semantic
correctness of all possible products on an SPL is an open
issue.

5. RELATED WORK
There is a whole body of work that addresses quality and

safety of product lines. Some of the existing works in this
field do not check the SPL itself but the distinct products
that can be created out of an SPL [17]. The problem with
testing all products is a large number of different products
that are possible with already a fair amount of independent
optional features (for n optional features, 2n distinct vari-
ants are possible). This implies that in those cases not all
possible variants are checked. Instead, only products that
are actually created out of the SPL or combinatorial samples
are considered which again means that a lot of repetitive in-
spection is needed compared to ensuring the well-formedness
of the SPL itself.

As already mentioned in Sect. 3, some approaches check
the SPL itself. Czarnecki and Pietroszek [8] address the
problem of ensuring the validity of any possible solution-
space models by checking those models against well-formedness
OCL constraints. Their solution describes how well-formedness
OCL constraints can be interpreted based on propositional
formulas by taking into account feature expressions mapped
to modelling elements. Similarly, Thaker et al. [20] use
propositional formulas and SAT solvers to ensure safe com-
position of feature modules in the AHEAD system. In this
paper we proposed extending those existing solutions to mod-
els defined in arbitrary Ecore-based languages.

In [14], Kästner et al. present an approach for guarantee-
ing syntactic correctness of all possible variants of an SPL.
In contrast to what we discussed in this paper, their work is
based on programming languages where syntax errors (such
as omitting a necessary closing bracket) can easily occur.
This is not the case for modelling languages since modelling
editors work on a different level of abstraction where it is
not possible to create model elements that do not conform
to the concrete syntax of the modelling language.

In [18], Seifert and Samlaus present an approach for static
analysis of source code using OCL. They present RestrictED,
an extensible editor for textual modelling languages based
on EMFText [11] that can be parametrized with language-
specific constraints for checking source code modelled with
EMFText languages. Our idea of creating a generic frame-
work that can be parameterized with modelling-language
specific well-formedness rules is an extension this idea, tak-
ing into account mapping information between feature mod-
els and solution-space models. Furthermore, we aim at cre-
ating a framework that abstracts from the concerte-syntax
representation of the specific modelling languages (i.e., graph-
ical or textual concrete syntax) and handles them in a uni-
form way.

6. CONCLUSION
In this paper we discussed various possibilities to check

all participating models of an SPL against well-formedness
rules defined on the metamodels that are used to create those
models. We discussed existing approaches for ensuring the
validity of models for all the concrete products that can be
created out of an SPL as well as open issues and future work.
Throughout the paper, we related the identified possibilities
for ensuring well-formedness to their implementation in the
FeatureMapper SPL tool and outlined our plans to integrate
existing work to uniformly check well-formedness of SPLs
with this tool.
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