FeatureMapper: Mapping Features to Models’

Florian Heidenreich
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany
florian.heidenreich@tu-
dresden.de

ABSTRACT

Variability modelling with feature models is one key technique for
specifying the problem space of Software Product Lines (SPLs).
To alow for the automatic derivation of a concrete product based
on a given variant configuration, a mapping between features in
the problem space and their redlisations in the solution space is
required. Itiscrucial to support the developer in the complex task
of defining such mappings. These mappings can aso be used to
provide visualisations of the variant space that allow to reason over
variability in SPLs. In this paper we present FeatureMapper, atool
that allows for defining mappings of features to model elements
specifying feature realisations. These feature realisations can be
defined in arbitrary Ecore-based languages. Furthermore, the tool
supports different visualisation techniques that can help developers
understand the complex designs of SPLs.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE); D.2.2 [Design Tools and Techniques]: Ob-
ject-oriented design methods

General Terms
Design, Languages

Keywords

Software Product Lines, Feature Modelling, Feature Visualisation,
Feature Mapping, Model Transformation

1. INTRODUCTION

Variability modelling is used to express common and variable
parts within Product Line Engineering (PLE) and to explicitly de-
fine constraints between variable parts—so-called features. It ab-
stracts from concrete feature realisation through feature models
which is a powerful notion to handle the increased complexity in
PLE [2, 5]. However, to build concrete products from a product
line, features have to be redised using software artefacts shared
across the product line. While variability modelling resides in the
problem space, the realisation of features is part of the solution

*This research has been co-funded by the German Ministry of Ed-
ucation and Research (BMBF) within the project feasiPLe.

Copyright is held by the author/owner(s).
ICSE’08, May 10-18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

Jan Kopcsek
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany
mail.inf.tu-

dresden.de

s9730399

Christian Wende
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany
christian.wende@inf.tu-
dresden.de

space. To instantiate products from a product line, feature reali-
sations in the solution space have to be included according to the
presence of the features in a variant model; that is, a concrete se-
lection of features from afeature model.

To support this transition from problem space to solution space
in an automated way, a mapping from features to software artefacts
that realise the features is needed. Our tool FeatureMapper allows
for both defining and interpreting such mappings. Furthermore,
it supports the developer understand those mappings by providing
different visualisation techniques.

The remainder of this paper is structured as follows. Section
2 shortly introduces different ways of mapping features to mod-
els and presents our metamodel-based approach to feature map-
ping. Section 3 presents our tool FeatureMapper, its different ways
of defining feature mappings and the visualisation techniques pro-
vided to support the developer. We conclude in Section 4.

2. MAPPING FEATURESTO MODELS

In our work we aim at bridging the gap between feature models
and solution models to enable the usage of feature models within
aModel-Driven Software Development (MDSD) [10] process. We
designed a metamodel [6] to express a mappings between features
from a feature model to their realisation in models defined in arbi-
trary Ecore-based languages [1].

A mapping model is an instance of our mapping metamodel and
contains both links to the features in the feature model and to model
elements of one or more solution models. Essentidly, it can be
created in two different ways.

Manual Mapping A manual mapping isamapping where the de-
veloper manually assigns specific model elements as realisa-
tion to one feature or acombination of features in the feature
model. A manual mapping isoften needed when existing ele-
ments from realisation models need to be mapped to features
from afeature model. This also includes changes to existing
mappings that occur during evolution of the SPL.

Automatic Mapping An automatic mapping isautomatically gen-
erated while the developer is modelling the realisation of a
feature. To thisend, all changes to the model are tracked and
are mapped to a previously selected feature.

It is obvious that a one-to-one relationship between features and
their realisation cannot always be assumed. Different combina-
tions of features may require dedicated solution artefacts. Hence,
our mapping metamodel also supports the assignment of logical
combinations of featuresin a mapping. Thus, the mapping of, for
example, the conjunction of two features to model artefacts is pos-
sible.



eH o2 ST &
platF: ‘esourceficse-2008-demojmodel{MappingMadel.

SRR Feature Contact Management
=4 Group 0
4 Feature Addresses
4 Feature Relationships
@ < Feature Contact Opportunities
4 Feature Notes
(= 4 Feature Groups
=<4 Group 0
<4 Feature Multiple Assignment
4 Feature Arbitrary Depth

Current Expression |

<4 Feature Relationships

Selected Elements & ¢

4 Feature Addresses

Figure 1. Screenshot of the FeatureMapper view.

3. TOOL SUPPORT

Figure 1 shows a screenshot of the FeatureMapper. It consists of
four parts. The tool bar (1) provides means for loading and saving
feature mappings and for different visualisation options. The upper
compartment (2) contains the feature model that is associated with
the current mapping model. The example describes the variability
options in a basic contact management application. Compartment
(3) contains the feature or feature combination that is currently ac-
tive. Compartment (4) contains the feature or feature combination
that has already been applied to currently selected model elements
of the solution model.

Our tool consists of multiple plug-ins for the Eclipse Platform. It
is based on the Eclipse Modelling Framework (EMF) [1] that pro-
vides the Ecore metamodelling language which is used to specify
the abstract syntax for arbitrary modelling languages. Thus, the
modelling of the solution space is not bound to any concrete lan-
guage and existing EM F-based modelling tools (e.g. TOPCASED
[9]) can easily be integrated. For creating feature models, we use
the feature metamodel developed by the feasiPL e consortium [4].

In the following subsections we will describe the different means
for mapping features to model elements supported by our tool. We
will present the provided visualisation techniques and will explain,
how the tool can be used to create concrete products of a product
line.

Manual Mapping. The manual mapping of features to model
elements is straightforward. First, the developer activates the fea-
ture from the feature model and thereby changes the current active
feature or feature combination. It can now be applied to selected
model elements in one or more solution models using the down
arrow on the right of the Selected Elements compartment.

Automatic Mapping. Theautomatic mapping isenabled by the
recording button from the tool bar. While the tool isin recording
mode, al changes to one or more solution models are automatically
associated to the current expression. Thisway, it is also possible to
associate changes to properties of model elements—e.g. changing
names of association ends or changing cardinalities—to features
from the feature model. Changing properties is a very powerful
concept that is comparable to the notion of meta expressions in [3].

Visualisation. It is crucial that the different mappings are vi-
sualised in away, that the developer understands the participation
of specific elements in a feature and can verify the correctness of
a given variant of the SPL. Therefore, our tool provides different
means for visualisation—filtering and colouring in graphical edi-
tors. The realisation filter helps at understanding which parts of
amodel are mapped to a specific feature by greying out all model
elements that do not participate in the realisation of the current fea-
ture. The variant filter shows all model elements that are included
in a specific variant of the product line. Colouring specific feature
combinations and the corresponding model elements helps at rea-
soning about feature interactions. Our tool worksin anon-invasive
way with any graphical editor that is based on the Graphical Edit-
ing Framework (GEF) [7]. That means, that the graphical editor
does not need to be adjusted to work with our tool.

Instantiation. Inaddition to creating mappings between features
and models and visualising them, our tool can interpret those map-
pings to create models that only include the parts that are needed
for agiven variant. A transformation component transforms one or
more solution models to a concrete variant based on feature selec-
tion in the variant model and the information in the mapping model.
Thistransformation can be triggered from our tool and isalso avail-
able as an openArchitectureWare [8] workflow component.

4. SUMMARY

In this paper we presented our tool FeatureMapper that allows
for mapping features to model elements that are defined in Ecore-
based languages. These mappings are crucial for automatically
creating concrete products from a product line. The tool supports
both automatic mappings and manual mappings and offers vari-
ous means for defining views on the mappings (e.g. filtering and
colouring). In our future work we want to evaluate this approach
in a real-world case study to analyse usage patterns and improve
the tool. We also want to investigate different ways of visualis-
ing property value mappings and explore possibilities to extend the
approach for supporting arbitrary solution artefacts.

The FeatureMapper and more documentation are available at
http://fheidenreich.de/work/fm/.

5. REFERENCES

[1] F Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling Framework.
Pearson Education, 2003.

[2] K. Czarnecki. Overview of Generative Software Development. In Proceedings
of the Unconventional Programming Paradigm, volume 3566 of LNCS, pages
326-341. Springer, 2005.

[3] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In R. Glick and M. Lowry,
editors, Proceedings of the 4th Int’l Conf. on Generative Programming and
Component Engineering (GPCE’05), volume 3676 of LNCS, pages 422-437.
Springer, 2005.

[4] feasiPLe Consortium. feasiPLe Research Project, Feb. 2008. URL
http://feasiple.de.

[5] K.Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented
Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1990.

[6] J. Kopcsek. Design and implementation of atool for feature-driven modelling
using domain-specific languages, Nov. 2007. Grof3er Beleg. Technische
Universitét Dresden (availablein German).

[7] The Eclipse Foundation. Graphical Editing Framework, Feb. 2008. URL
http://www.eclipse.org/gef/.

[8] The openArchitectureWare Project Team. openArchitectureWare, Feb. 2008.
URL http://www.openArchitectureWare.org.

[9] The Topcased Project Team. TOPCASED, Feb. 2008. URL
http://www.topcased.org.

[10] M. Vélter and T. Stahl. Model-Driven Software Development. John Wiley &
Sons, June 2006.



