
A Model-based Product-Line for Scalable
Ontology Languages?

Christian Wende and Florian Heidenreich

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
{c.wende|florian.heidenreich}@tu-dresden.de

Abstract. Research in the area of semantic web brought up a plethora
of languages to represent ontologies. They all differ in expressiveness
and reasoning efficiency. Thus, the choice of a specific language means
a trade-off between reasoning capabilities and performance. This paper
outlines how techniques from product-line engineering can be combined
with model-based language engineering to allow for organising ontology
languages in a language family and configuring them for concrete use
cases.

1 Introduction

Ontologies provide means for encoding knowledge about specific domains and
often include reasoning rules that allow for deriving implicit knowledge. The
manifold of domains that ontology languages are applied to led to a plethora of
languages to represent ontologies. In this paper we focus on a subset of ontology
languages based on the OWL2 standard [25] that provides an implementation for
Description Logics (DLs) [1]. They share the common approach of representing
knowledge using hierarchies of unary atomic concepts that are augmented with
binary logical operators or roles to describe concept relationships. Expressiveness
and reasoning efficiency is directly determined by the concrete binary operators
a language provides [6]. Thus, the choice of a specific language means a trade-
off between performance and reasoning capabilities. To achieve scalability of
ontology languages both performance and functional requirements of a specific
use case need to be consider.

Customising ontology languages from a language family has been identified
to be a promising approach to address specifics of the use case they are applied
to [27]. In addition, it has a number of other benefits: (1) Common language fea-
tures can be reused among the language family members. (2) The family mem-
bers are organised in a systematic way. (3) Specific expressiveness and reasoning
requirements can be addressed by recombining existing language features. (4)

? This research has been co-funded by the German Ministry of Education and Research
(BMBF) within the project feasiPLe and by the European Commission within the
FP7 project MOST contract number 216691.



Ontology language evolution can be realised by contributing new features to the
language family. (5) Language tooling (e.g., dedicated parsers, printers, editors,
and reasoners) can be generated. To support a systematic approach for language
customisation, we argue for combining techniques from product-line engineer-
ing and model-based language engineering. This paper contributes a systematic
classification of ontology languages using the the paradigm of feature modelling.
This enables feature-based customisation of OWL2 w.r.t. a specific use case.
Second, we introduce a model-driven process to generate the tool infrastructure
that is crucial for the adoption of the language variant in knowledge modelling.

The rest of this paper is structured as follows: Section 2 discusses the ap-
plication of feature modelling to specify commonalities and variability among a
family of OWL2-based ontology languages and explains how to use this variabil-
ity information to select a language variant matching the needs of a specific use
case. Section 3 discusses the generation of the tool infrastructure that is crucial
for the application of a custom language variant. We introduce a model-driven
process to automatically generate a parser, printer, and editor for a given lan-
guage variant. For the sake of complexity we consider the generation of semantic
tooling (e.g. reasoners) out of the scope of this paper. However, even with ex-
isting reasoners reasoning efficiency can be scaled by purely syntactic language
adaptation [8, 13, 23]. We conclude and present future work in Section 5.

2 Feature-Based Ontology Language Configuration

The syntactic and semantic expressiveness of ontology languages is described
inductively by the DLs [1] constructors they provide for knowledge representation
[6]. The connection between reasoning characteristics of an ontology language
and its logical constructors motivates a guidance of language configuration by
means of singular logical constructors. Since constructors are interdependent and
interact, it is necessary to specify dependencies and relations between them. This
can be done using the paradigm of feature modelling.

The feature model depicted in Fig. 1 is based on the constructors used in
DLs to describe the expressiveness of ontology languages. It describes common-
alities and variability in our OWL2-based family of ontology languages. Every
feature represents a single constructor by its textual name and the letter used
in the usual naming conventions for DLs (for an overview see [1]). In addition,
a cardinality is given for every language feature. A feature connected by a line
ending with a filled circle represents a mandatory feature and is used in every
OWL2 language variant. Empty circles identify optional features.

All possible feature combinations span the variation space for our language
family. A concrete selection of features from this variation space describes a
specific ontology language variant. Its simplest member can be built using only
the mandatory features (Concepts, Top, Bottom, Intersection, AtomicNegation
and ValueRestriction). It corresponds to the minimal Attributive Language AL
that is considered the base of our desciption logics language family. By includ-
ing for example the optional features R+, C, H, O, I, N , and (D+) one could



Fig. 1. Feature model that describes the variability space of ontology languages

configure the language variant SHOIN (D+) with the expressiveness of OWL
DL [21]. When features or feature combinations are annotated with their im-
plications on reasoning efficiency (as studied in [6]), this feature model can be
used to guide the customisation process regarding language expressiveness and
efficiency. In addition, one can identify gaps in the language hierarchy and fill
them by configuring constructors or by adding new logical constructors.

This feature-based modularisation of languages introduces a foundation for
making reasoning technology more scalable: Optimised language variants can be
configured that take the concrete expressiveness and efficiency requirements of
a specific use case into account.

3 Model-based Ontology Language Engineering

There are three driving forces that made us address the problem of building the
language family in a model-based way. First, modelling techniques offer support
for transformation of models into other representations, e.g., reduced models
or more specific models. This is particularly needed when deriving a concrete
language from the language product-line. Second, models can be easily used for
code generation, which is needed to automatically generate tool support for the
concrete language. This is an important point, since building tools by hand is
an expensive task. Third, models usually share a common metamodel which
directly supports interoperability between different tools that are based on the
metamodelling technology at hand. We decided to use Eclipse and the Eclipse
Modelling Framework (EMF)1 because of the variety of tools that exist to create,
edit, and transform models based on EMF.

3.1 Language Family Development Process

The initial starting point for developing the ontology-language product line is
modelling the problem space by means of a feature model (cf. Fig. 1). We used
a lightweight version of the EMF/Ecore-based feature metamodel developed in
the feasiPLe project2.
1 http://www.eclipse.org/modeling/emf/
2 http://feasiple.de



Since we want to (1) transform the description of the solution space, that
is, the realisation of the language syntax features and (2) generate tooling (e.g.,
parsers, printers, editors, ...) out of the specification, we used Ecore to build an
OWL metamodel and EMFText3 [11]—a model-based tool for defining textual
concrete syntax for models. EMFText offers a dedicated language for specifying
text syntax for models called CS which is similar to Extended Backus-Naur Form
(EBNF). With CS, rules are defined which specify textual syntax for metaclasses
of a given Ecore-based metamodel. In our case, we first modelled the OWL meta-
model (based on [3]) which defines the abstract syntax of the various language
features. Then we derived CS rules that describe the textual syntax for the
concepts corresponding to OWL Manchester syntax [14].

Fig. 2. Using the FeatureMapper to map OWL features to specific parts of OWL2
abstract and concrete syntax

One observation we made in previous work [10, 12] is that it is crucial to have
a mapping between the problem space (i.e., a variability description of language
features in a feature model) and the solution space (i.e., a concrete realisation
of specific language features in EMFText’s CS language). This mapping can
then be used both for visualising dependencies between features and realisation
artefacts and for automating the product-instantiation process. An overview of
the models used to specify the the ontology language product line and their
relationships is depicted on the right part of Fig 3.

The FeatureMapper4 is a tool that was specifically developed to tackle that
problem and allows for creating a mapping between feature models and EMF-
/Ecore-based models. Since EMFText is built with itself, the CS language is
again a model-based language which can be used in combination with Fea-
tureMapper. We extended the FeatureMapper to also support mapping and

3 http://www.emftext.org
4 http://www.featuremapper.org



visualisation of textual languages that are created by EMFText and used it
to create a mapping between the language features in the feature model and
the realisation of those features in the CS specification. Both tools are depicted
in Fig. 2 where the view on the left side contains the FeatureMapper with the
feature model for the ontology-language product line. The editors on the right
side show a part of the OWL metamodel and CS specification for existing lan-
guages in the OWL language family. To present the concrete mapping to the
language developer the FeatureMapper colours the elements in the CS speci-
fication and the OWL metamodel in accordance to the colour of the feature
in the feature model they are mapped to. The example depicts the mapping
used to define the syntactic realisation of the feature InverseProperties. For
that purpose the association inverseProperties between ObjectProperty and
ObjectPropertyReference that is used in the abstract syntax to represent in-
verse properties and the corresponding fragment of concrete syntax are mapped
to the feature InverseProperties.

3.2 Language Derivation Process

After we defined the scope of the language product line, we are able to de-
rive concrete instances (i.e., languages) from that definition. To do so, the Fea-
tureMapper provides means to transform models according to a given feature
selection (a variant model) by interpreting the mapping model that contains the
various mappings between features and model elements. After this transforma-
tion step, a reduced CS specification is produced that only contains the rules
that are needed for the selected language features. This reduced CS specification
is then used by EMFText to generate a dedicated parser, printer, and editor.
The process of feature-based language derivation is depicted in Fig. 3.

Fig. 3. Model-based Ontology Language Derivation Process



4 Related Work

Scalability is a widely discussed and very prominent topic that constitutes a
main challenge for the application of ontology languages [6, 19]. The objective
of efficient reasoning has led to a manifold of languages with specific reasoning
characteristics [5, 2, 25, 20, 22]. The idea that scalability can be achieved by se-
lecting a language from this manifold that is appropriate for the requirements
of a specific use case is not new. In [17] the authors provide a comprehensive
comparison of nine DLs-based ontology languages w.r.t. their syntactic features
and reasoning efficiency. The results of this survey are envisaged as guideline
for matching ontology languages to use cases. The fact that the OWL2 stan-
dard [25] introduces three languages with different expressiveness and reasoning
characteristics illustrates that nowadays ontology languages are already designed
with that idea in mind. Our work picks up this idea and presents a methodical
approach and a technological infrastructure to get from language features se-
lected for a use case to the actual implementation of the language variant and
the corresponding tool infrastructure. In addition, the presented model-driven
approach is suited to deal with the proceeding evolution of ontology languages
by supporting the introduction of new language features.

A second branch of work addressing the scalability issue deals with the de-
velopment of more efficient reasoners or the enhancement of existing reasoning
techniques. This led to numerous highly optimised native ontology reasoners [9,
26, 28] that perform well even for expressive ontology languages but only for
reasonable sized ontologies. Large amounts of facts often result in poor response
times that impede applicability in practice [17]. Approaches presented in [4, 7, 29]
store ontologies in relational databases to use the optimised database query en-
gines for ontology reasoning. As discussed in [19] this leads to increased load-time
but more efficient reasoning compared to native ontology systems. In [16] on-
tologies are represented in disjunctive datalog programs. Additional algorithmic
optimisation can be applied on the datalog facts to enhance reasoning efficiency.
Other approaches [8, 13, 23, 24] enhance reasoning efficiency by approximating
more expressive ontology languages to less expressive ones. The reduction of
complexity leads to better reasoning performance while preserving the com-
pleteness and soundness of the reasoning results. Reasoners and approximation
approaches are designed for a very a specific subset of DLs features. Using a
generic tool like Sesame [4] that allows for exchanging the reasoning back-end
they can be combined with our feature-based ontology language configuration.
Thus, we could provide appropriate (semantic) reasoning infrastructure w.r.t. a
specific language variant.

5 Conclusion

The contribution of this paper is twofold: First, we transferred the existing DL-
based classification of ontology languages to the paradigm of feature modelling.
This enables feature-based customisation of OWL2 w.r.t. a specific use case.



Future work needs to enrich the current classification with further metadata
(e.g., efficiency annotations) that can be used to guide language configuration.
In addition to that, other ontology language extensions—like rule extensions [15]
or probabilistic extensions [18]—should be included in such classification.

Second, we presented a model-driven process to generate a dedicated parser,
printer, and editor from a given variant specification. This infrastructure is cru-
cial for the application of the language variant in knowledge modelling. In addi-
tion, the effort to provide new language extensions or language adaptations can
be reduced by using the introduced model-driven process.

The solution presented in this paper only tackles syntactic language varia-
tions. To advance the impact on reasoning efficiency and language applicability,
future work needs to investigate the possibilities of deriving language specific
infrastructure w.r.t. language semantics. This relates to topics as semantic ap-
proximation of OWL [24], and composition of language semantics [30].

The introduced approach for applying techniques of product-line engineering
for the systematic development of language families is not limited to ontology
languages. Thus, future work will also address its extension to other languages.

References

1. F. Baader. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

2. D. Berardi, A. Cali, D. Calvanese, and G. D. Giacomo. Reasoning on UML Class
Diagrams. Artificial Intelligence, 168, 2003.

3. S. Brockmans, P. Haase, and B. Motik. OWL 2 Web Ontology Language
MOF-Based Metamodel. Available at http://www.w3.org/2007/OWL/wiki/MOF-
Based Metamodel, 2007.

4. J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. The Semantic Web ISWC 2002,
pages 54–68, 2002.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429, 2007.

6. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1–58, 1997.

7. Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable Distributed Ontology Reason-
ing Using DHT-Based Partitioning. Proceedings of the 3rd Asian Semantic Web
Conference on The Semantic Web, pages 91–105, 2008.

8. P. Groot, H. Stuckenschmidt, and H. Wache. Approximating Description Logic
Classification for Semantic Web Reasoning. 2005.

9. V. Haarslev and R. Moller. RACER system description. Automated Reasoning -
Lecture Notes in Computer Science, pages 701–706, 2001.

10. F. Heidenreich, I. Şavga, and C. Wende. On Controlled Visualisations in Software
Product Line Engineering. In Proceedings of the 2nd International Workshop on
Visualisation in Software Product Line Engineering (ViSPLE 2008), collocated
with the 12th International Software Product Line Conference (SPLC 2008), Sept.
2008.



11. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Derivation and
Refinement of Textual Syntax for Models. In Proceedings of the 5th European Con-
ference on Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009), June 2009. To appear.

12. F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping Features
to Models. In Companion Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), pages 943–944, New York, NY, USA, May 2008.
ACM.

13. P. Hitzler and D. Vrandecic. Resolution-based Approximate reasoning for OWL
DL. The Semantic Web ISWC 2005, 3729, 2005.

14. M. Horridge and P. F. Patel-Schneider. OWL 2 Web Ontology Language: Manch-
ester Syntax. Available at http://www.w3.org/TR/2008/WD-owl2-manchester-
syntax-20081202/, 2008.

15. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 2004.

16. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ- description logic to dis-
junctive datalog programs. Proceedings of Principles of Knowledge Representation
and Reasoning, pages 152–162, 2004.

17. C. Keet and M. Rodriguez. Comprehensiveness versus Scalability: Guidelines
for choosing an appropriate knowledge representation language for bio-ontologies.
KRDB Research Centre Technical Report, KRDB07-5, 2007.

18. T. Lukasiewicz. Probabilistic Deduction with Conditional Constraints over Basic
Events. Journal of Artificial Inteligence Research, 1999.

19. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL
ontology benchmark. The Semantic Web: Research and Applications, 2006.

20. D. McGuinness, R. Fikes, J. Hendler, and L. Stein. DAML+ OIL: an ontology
language for the Semantic Web. IEEE Intelligent Systems, 17(5):72–80, 2002.

21. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Available at http://www.w3.org/TR/owl-features/, 2004.

22. J. Pan and I. Horrocks. RDFS (FA): connecting RDF (S) and OWL DL. IEEE
Transactions on Knowledge and Data Engineering, 19:192.

23. J. Pan and E. Thomas. Approximating OWL-DL Ontologies. Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI-07), 2007.

24. J. Pan, E. Thomas, D., and Sleeman. Ontosearch2: Searching and querying web
ontologies. Proceedings of WWW/Internet, 2006.

25. P. F. Patel-Schneider, P. P. Hayes, and I. Horrocks. OWL 2 Web On-
tology Language: Profiles: OWL-R. W3C Working Draft. Available at
http://www.w3.org/TR/owl2-profiles/]OWL-R, 2008.

26. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web,
5(2):51–53, 2007.

27. H. Stuckenschmidt. Statement of Interest: Towards Ontology Language Customiza-
tion. Ontologies and Information Sharing, 2001.

28. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. Automated Reasoning - Lecture Notes in Computer Science, 4130:292, 2006.

29. J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable OWL
ontology storage and inference system. The Semantic Web ASWC 2006, 4185:429,
2006.

30. S. Zschaler and C. Wende. Collaborating Languages and Tools - A Study in Fea-
sibility. Technical Report TU Dresden - TUD-FI08-06, 2008.


