
On Controlled Visualisations in Software Product Line Engineering

Florian Heidenreich Ilie Şavga Christian Wende

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany

E-mail: florian.heidenreich@tu-dresden.de

Abstract

Ongoing research in Software Product Line Engineer-
ing (SPLE) emphasises the derivation of a concrete prod-
uct based on a given variant configuration as one of the
most promising areas of the field. To allow for (auto-
matic) derivation of products in SPLE, models that describe
features and their variability in Software Product Lines
(SPLs)—for example feature models—need to be connected
with artefacts that are realising the features. It is crucial not
only to support the developer in the complex task of defin-
ing such connections, but also to provide means to reason
and analyse them—for example visualisations. In this pa-
per we present MappingViews, a novel visualisation tech-
nique that provides four different visualisations for connec-
tions between variability models and realisation models and
show its realisation in our tool FeatureMapper.

1 Introduction

Software Product Line Engineering (SPLE) abstracts
and explicitly represents the notion of variability to ease the
development of complex systems. In SPLE, the architecture
of a system not only describes one product, but many of the
same nature with various variable parts and modules [1, 18].
Feature modelling is a key technique used for expressing the
mandatory and variable features in SPLs [5, 14]. One of the
challenging issues within SPLE is, that there is a gap from
features of feature models to the realisation of the features
by specific software artefacts [13].

To bridge this gap, Czarnecki et al. proposed a template-
based approach [6, 8] where features from feature mod-
els are connected with UML model elements by Presence
Conditions. Presence Conditions are expressions that are
directly annotated to the UML model elements by using
XPath expressions or UML stereotypes. By introducing this
connection between features and model artefacts, an initial

step towards automatic product derivation is done. How-
ever, this solution leaves out an important concern. As the
realisation models grow in size and complexity, it becomes
even harder to retrace and understand connections. Visuali-
sation techniques—such as building views on the models—
could help, but only one visualisation was provided in [6],
that is, the representation of the complete mapping in the
realisation models. Additionally, the developer is not in the
control of visualisation in their approach and this control
is extremely important for understanding and exploring the
models. It is hard to impossible to understand a non-trivial
system unless you look at it from different points of view
[9, page 1].

In many cases developers are interested only in a par-
ticular aspect of the connection between a feature model
and realising artefacts. How a particular feature is realised?
Which artefacts may be effectively used in a variant? In
this paper we argue for the need to support different inter-
active visualisations of mappings between features and re-
alisation artefacts in SPLE that can be controlled, i.e. en-
and disabled or parameterised, by developers. In Section 2
we present MappingViews, a novel visualisation technique
that provides four different visualisations that we identified
to be useful in tackling the increased complexity in SPLE.
Our realisation of the visualisations in our tool FeatureMap-
per [11] is presented in Section 3. Before we conclude in
Section 5 we relate our approach to selected existing work
in Section 4.

2 Visualisation of Mappings between Fea-
tures and Software Artefacts

As motivated in Section 1, there is a strong need to pro-
vide visualisations that support the developer of a SPL at
defining and understanding the complex connections be-
tween features from feature models and the software arte-
facts that are realising those features. We call this con-



nections Feature Mappings—or mappings—in our work.
These mappings usually do not only contain mappings be-
tween features and software artefacts, but also between
feature expressions and software artefacts, where a fea-
ture expression is a logical combination of features (e.g.
FeatureA AND FeatureB).

In the context of the feasiPLe research project [10],
where we have been developing and analysing different ex-
emplary product lines, we noticed that a fixed and static vi-
sualisation of the feature mapping, as realised by Czarnecki
et al. [6, 8] is too limited in some cases. A single visualisa-
tion of the feature mapping as a whole only offers informa-
tion in one dimension, that is, which feature is realised by
which software artefacts. The interpretation and analysis of
this mapping is still completely up to the developer.

Motivated by the need for increased support of the devel-
oper in SPLE, we propose a novel visualisation technique
called MappingViews which provides four basic visualisa-
tions, called views, that we identified to be helpful in the
context of PLE:

• Realisation View,

• Variant View,

• Context View, and

• Property-Changes View.

In the following, to describe these visualisations indepen-
dently from their concrete technological realisations, we
use the term problem space instead of a concrete variabil-
ity management mechanism and the term solution space in-
stead of a concrete realisation technique for software arte-
facts [7].

2.1 Realisation View

The Realisation View is a visualisation that helps at un-
derstanding which software artefacts are mapped to a spe-
cific feature from the problem space. It hides, removes, or
filters out all software artefacts that do not participate in the
realisation of the specific feature. This enables the devel-
oper to directly see all (and only those) artefacts that par-
ticipate in the realisation of a specific feature or feature ex-
pression. It also provides basic means to analyse and mea-
sure the impact of a specific feature in the SPL. That is, the
developer can see whether a feature is connected to many
artefacts or just to few of them and, thus, an initial under-
standing of the complexity of the feature can be provided.
Additionally, the Realisation View can help at analysing fea-
ture granularity, that is, analysing whether a feature is re-
alised by coarse-grained modules or by more fine-grained
artefacts.

2.2 Variant View

The Variant View is a visualisation that hides, removes,
or filters out all software artefacts that are not included in
a specific variant of the product line. That is, it shows or
highlights only those artefacts that are included in a specific
configuration of the product line. This view provides basic
means to analyse the well-formedness and validity of the
resulting concrete variant of the SPL. It is up to the imple-
menter of the visualisation whether artefacts that are com-
mon to all products of the SPL, that is, the core, and are not
mapped to a specific feature are also included in the vari-
ant view. This view enables the developer to get a dynamic
view on the resulting system. This is particularly helpful in
the design phase, where effects of small changes to the map-
ping between features and artefacts need to be constantly
checked to ensure a valid resulting system.

2.3 Context View

It is often necessary to also analyse the communication
and interaction among features, between features and the
core of the product line or to inspect the realisation of a
feature in its context. For this task, the Context View vi-
sualisation can be used. Each feature or feature expression
of interest can be assigned a certain colour. Assuming that
it is possible to render the representations of the software
artefacts in the same colour (which is possible with state-
of-the-art editors for model artefacts), an intuitive way for
the visualisation of feature borders and the communication
between features is possible. The Context View can be seen
as a more generalised version of the Realisation View as it
provides means to visualise the realisation of multiple fea-
tures or feature expressions. We argue, that it has to be
distinguished from the Realisation View which only shows
the realisation of a single feature or feature expressions, be-
cause colouring has a different intent, that is, it reveals fea-
ture communication and interaction.

Assigning colours to features also raises some interest-
ing questions. As soon as many colours get assigned (e.g. in
a very complex SPL), usability is again decreased because
many colours become hardly to distinguish at some point.
Thus, we argue, that it only makes sense to enable colouring
for a limited set of features. In addition to that, the selec-
tion of the colours used should be left to the developer and
should not be assigned automatically. Otherwise, issues like
red-green colour-blindness become significant.

Another issue is the possibility of defining overlapping
feature mappings (e.g., one solution artefact is mapped to
more than one feature or feature expression). While mixing
of colours looks like an intuitive solution to this problem,
our experiments have shown, that it is usually hard to un-
derstand those mixed colours and retrace them to the initial



features or feature expressions. Therefore, we recommend
to change the mapping and use a corresponding OR feature
expression, where each feature that was initially mapped
to the software artefact is referenced (e.g. FeatureA OR
FeatureB).

2.4 Property-Changes View

Some features may require changes to the structure and
properties of a solution artefact. For example, a feature may
require the cardinality of a UML association to be changed
(e.g., a feature extends the cardinality from one to one-to-
many). These feature-dependent changes—also called meta
expressions [6] or property-value mappings [12]—are often
hard to understand and also difficult to visualise. This is
mainly due to the fact, that those feature-dependent changes
need to be interpreted based on a concrete variant configura-
tion to manifest themselves. A helpful technique for iden-
tifying those spots in the software artefacts is to highlight
them with an eye-catching colour, for instance red. This
way, the developer can further inspect, change, or delete the
identified feature-dependent changes. Another important
property of the Property-Changes View is, that it allows for
displaying encapsulated feature-dependent changes, which
were separated them from the software artefacts (as op-
posed, for instance, to XPath expressions [6] embedded into
UML models).

3 Visualisation of Feature Mappings in the
FeatureMapper Tool

Based on our findings regarding necessary and help-
ful visualisations, we implemented the proposed Map-
pingViews approach in our FeatureMapper [11] tool.

3.1 The FeatureMapper Tool

Figure 1 shows a screenshot of the FeatureMapper. It
consists of four parts. The tool bar (1) provides means for
loading and saving feature mappings and for controlling the
different visualisation options. The upper compartment (2)
contains the feature model that is associated with the cur-
rent mapping model. The example describes the variability
options in a basic contact management application. Com-
partment (3) contains the feature or feature expression that
is currently active. It can either be changed via double click
on a feature in the feature model or via the context menu
in this compartment. In the example, the current expression
involves the selection of the feature Relationships. Com-
partment (4) contains the feature or feature expression that
has already been applied to currently selected model ele-
ments of the solution model (which is not depicted in the

Figure 1. Screenshot of the FeatureMapper.

figure). In the example, the elements are associated with
the feature Addresses.

Our tool consists of multiple plug-ins for the Eclipse
Platform [20]. It is based on the Eclipse Modelling Frame-
work (EMF) [3] that provides the Ecore metamodelling lan-
guage which is used to specify the abstract syntax for arbi-
trary modelling languages. Thus, the modelling of the solu-
tion space is not bound to any concrete language and exist-
ing EMF-based modelling tools (e.g. TOPCASED [21]) can
easily be integrated. As a consequence, software artefacts
described by means of other metalanguages (e.g. MOF,
source code, or documentation artefacts) are currently not
supported by our tool. For creating feature models, we use
the feature metamodel developed by the feasiPLe consor-
tium [10].

To create a mapping between features or feature expres-
sions and model elements, the developer first has to select
the feature or feature expression from FeatureMapper’s fea-
ture model (cf. Figure 1(2)). Then, the corresponding model
elements that realise this feature need to be selected in the
solution model so that the active expression can be applied
to the model elements via the down-arrow toolbar button
in Figure 1(4). Internally, a new mapping element in the
mapping model is created, which serves as a link between
the feature expression and the model elements. This is later
used for visualisation and mapping-based derivation.

3.2 Visualisation in the FeatureMapper Tool

Our tool provides different means for visualisation for
both graphical and tree-based editors. It works in a non-
invasive way with any graphical editor that is based on the
Graphical Editing Framework (GEF) [19] and editors gen-



Contact
+ name

Address Relationship
+ role

Person
+ forename
+ surname

Company

ContactList

Group

+contact

1

+address

1

+relationships

1..*+source1

+relationships

1..*+target
1

+list1

+contacts1..*

+source*

+target *

+source 1

+target*

Figure 2. Realisation of the feature Relation-
ships rendered by FeatureMapper’s Realisation
View in a GEF-based editor (TOPCASED).

erated by EMF [3]. That means, that the editors do not need
to be adjusted to work with our tool.

3.2.1 Realisation View

In the FeatureMapper, the Realisation View helps to under-
stand which parts of a solution model are mapped to a spe-
cific feature or feature expression. It greys out all model ele-
ments that do not participate in the realisation of the current
feature. This is depicted in Figure 2 for the feature Rela-
tionships. Since the model elements that are not associated
with the feature are still shown, the context of interaction
between the feature realisation and the rest of the system
is preserved. To use this view, the developer first enables
the Realisation View via the respective button on the Fea-
tureMapper toolbar and selects the feature of interest from
FeatureMapper’s feature model.

3.2.2 Variant View

The Variant View shows all model elements that are in-
cluded in a specific variant of the product line. This visual-
isation can be either parameterised by an existing concrete
variant configuration or interactively adjusted by selecting
features from the feature model shown in the FeatureMap-
per. Unlike the Realisation View it also includes the ele-
ments that are common to all products from the product line
and are not mapped to a specific feature. Figure 3 shows a
variant of the product line that does not include the feature
Addresses. According to our experience, the Variant View
is a visualisation that directly resembles the semantics of
the transformations used for product derivation. To use this

Contact
+ name

Address Relationship
+ role

Person
+ forename
+ surname

Company

ContactList

Group

+contact

1..*

+address

1

+relationships

1..*+source1

+relationships

1..*+target
1

+list1

+contacts1..*

+source*

+target *

+source 1

+target*

Figure 3. Variant of the product line without
the feature Addresses rendered by the Variant
View.

view, the developer first enables the Variant View via the
respective button on the FeatureMapper toolbar and selects
all features that should be part of the specific variant of the
SPL.

Figure 4. Colours assigned to selected fea-
tures in the feature model.

3.2.3 Context View

The Context View involves the colouring of the features in
the feature model as well as the colouring of the model ele-
ments accordingly. In Figure 4 a feature model is depicted
that has colours assigned to some features1. These colours
are used by the tool to also colour the model elements that
participate in the realisation of the features. In Figure 5 the
model elements are shown that are rendered in the colour
that is assigned to the corresponding feature. Note, that
according to our argumentation in Section 2.3, mixing of

1Note that colours in this paper are indexed in order to be readable in
black and white printouts.



Contact
+ name

Address Relationship
+ role

Person
+ forename
+ surname

Company

ContactList

Group

3

3

3

1
1

2

2

2

Figure 5. Model elements that are rendered
in the colour that is assigned to the corre-
sponding feature.

colours is not supported. Instead, assigning colours to fea-
ture expressions is possible. In the FeatureMapper colours
can be assigned via a dedicated command from the fea-
ture’s context menu. An overview dialogue is also provided,
which allows for inspection and management of all assigned
colours and the corresponding feature expressions.

3.2.4 Property-Changes View

The FeatureMapper also allows for defining property-value
mappings that change properties of model elements—i.e.,
cardinalities, names of elements, or initialisation values.
Hence, means for highlighting the affected model elements
are provided. This is of particular importance, since those
changes are not directly visible in the other visualisations
and, thus, need specialised handling. In the Property-
Changes View, model elements with properties that are
changed according to feature selection are highlighted. The
highlighted elements can then be selected and a dedicated
dialogue can be displayed, which gives an overview of the
changes associated to the specific feature expressions. An
example of the Property-Changes View is depicted in Fig-
ure 6, where the cardinality of the reflexive association of
the class Group is highlighted to be subject for feature-
dependent changes. Once this model element is identified,
it can be inspected further by using a dedicated dialogue as
depicted in Figure 7. According to this dialogue, the car-
dinality of this association is changed from one to many
depending on the presence of the feature Arbitrary Depth.

Figure 6. Model elements in a tree-based edi-
tor that are highlighted by the Property-Changes
View.

Figure 7. Detailed view on property changes.

3.3 Summary

The presented visualisations support the developer in un-
derstanding the mapping between features from a feature
model and their realisation in solution models. Each visu-
alisation provides a different view on the SPL and reveals
properties of the system that are not visible in standard
tools. In particular, each view helps at answering specific
questions a developer may be interested in during develop-
ment of an SPL:

• Which artefacts realise a specific feature?
(Realisation View)

• Which artefacts are used in a specific variant of a SPL?
(Variant View)

• Is the resulting variant still a valid model?
(Variant View)

• Which features are interacting or communicating with
each other?
(Context View)

• Which features require property-value changes?
(Property-Changes View)

Most importantly, the views can be interactively enabled
and disabled in the FeatureMapper and, thus, visualisation
can be controlled by the developer.



4 Related Work

As mentioned in Section 1, the work by Czarnecki and
Antkiewicz [6] presents an approach, where features are
mapped to UML models by Presence Conditions that are
annotated to the model elements. This offers a basic means
for visualisation, namely the mapping as a whole. However,
controlled visualisation, to which we argue for in this paper,
is not provided. It is still fully up to the developer to inter-
pret and analyse the mapping, which can be a daunting and
difficult task if models grow in size and complexity.

The approach presented by Botterweck et al. [2] provides
various means to support the developer during product con-
figuration by visualising dependencies between features and
by colouring to indicate feature states. Additionally, fea-
tures are decorated by iconic representations of common
cardinalities. However, the approach does not include the
visualisation of the mapping between the problem and so-
lution spaces.

Kästner et al. [15, 16] provide a Colored Integrated De-
velopment Environment (CIDE) for mapping features to
source code artefacts. They use a mapping to map features
to elements of arbitrary abstract syntax trees. Similar to our
tool, they provide colouring of software artefacts (source
code snippets in this case) based on the feature mapping.
Colouring also involves mixing of different colours, be-
cause the CIDE tool does not allow for feature expressions.
However, property-value mappings are not supported. Most
important, since current source code editors do not sup-
port changing the background colour of specific source code
statements, the editors need to be adopted to provide the
functionality.

In [17], Nestor et al. present a research agenda for the
visualisation of variability in SPLE. They introduce a vi-
sualisation reference model that is a slightly adapted ver-
sion of the reference model presented in [4]. As part of this
model, a catalogue of visualisation interaction tasks is in-
troduced which includes, for example, the tasks of filtering
items, providing details on-demand, and viewing relation-
ships among items. Our work contributes to this work by
proposing concrete visualisations for its tasks and by pro-
viding an implementation of these visualisations.

5 Conclusion

We motivated the need for visualisations by the fact, that
mappings between features and software artefacts become
complex rapidly. We argued for controlled visualisations,
because visualisations are according to Card et al. ”ad-
justable mappings from data to visual form” [4, page 17]
and, thus, need to be enabled, disabled, or parameterised by
the developer. In this paper we presented two contributions
to the area of visualisation of software product lines.

First, we presented MappingViews, a novel visualisation
technique. It includes four basic visualisations which we
found to be useful for tackling the increasing complexity in
defining, understanding, and analysing mappings between
features and software artefacts that realise those features in
an SPL. The Realisation View allows for viewing all soft-
ware artefacts that participate in the realisation of a feature.
The Variant View provides a view on a concrete variant of
the SPL based on a variant configuration. The Context View
helps at understanding feature communication and feature
interaction, while the Property-Changes View offers means
to identify and change feature-dependent changes in soft-
ware artefacts.

Second, we presented an implementation of the pro-
posed visualisations in our tool FeatureMapper. The tool
allows for mapping features to modelling artefacts that are
expressed by Ecore-based languages. Furthermore, it pro-
vides means for mapping-based transformation of mod-
els (not covered in this paper). A screencast of the tool
in action and related work can be viewed at http://
featuremapper.org.

Our future work focuses on developing a visualisation
framework for the FeatureMapper, where the presented vi-
sualisations adjust automatically when different transforma-
tional semantics are used in product derivation. At the mo-
ment, the visualisation assumes that each artefact that is as-
signed to a specific feature is simply removed if the fea-
ture is not present in a concrete variant of the SPL. This
is true for the standard transformation that is included in
the FeatureMapper. But since the FeatureMapper allows
for using arbitrary interpretations of the mapping model by
an Eclipse extension point, other transformational seman-
tics are possible. For example, a more specific transforma-
tion may remove additional depended artefacts based on a
mapping to a single artefact or may apply automatic repair
actions to ensure well-formedness of the resulting model.
These issues will be addressed by the envisioned visualisa-
tion framework.

We are currently also investigating additional views that
reveal other interesting properties of an SPL. For example,
a dedicated view for visualisation of feature granularity–as
the Realisation View basically does–seems to be promis-
ing. This view could visualise the system depending on
the granularity of the changes that are used to realise a fea-
ture. Since systems with many fine-grained changes tend
to become complicated and decrease maintainability [15],
hotspots of a system with many fine-grained changes need
to be identified so that possibilities for refactoring towards
more coarse-grained changes can be evaluated.

Additionally, we plan to further evaluate the approach
by using the MappingViews visualisations with our Fea-
tureMapper tool in a real-world case study which is cur-
rently under development within the feasiPLe project.



Acknowledgements

The authors would like to thank the anonymous review-
ers for their valueable comments and Jan Kopcsek for im-
plementing MappingViews in the FeatureMapper tool.

This research has been co-funded by the German Min-
istry of Education and Research (BMBF) within the project
feasiPLe (cf. http://www.feasiple.de).

References

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 2003.

[2] G. Botterweck, D. Nestor, C. Cawley, and S. Thiel. Towards
Supporting Feature Configuration by Interactive Visualisa-
tion. In Proceedings of the 1st International Workshop on
Visualisation in Software Product Line Engineering (ViS-
PLE 2007), collocated with the 11th International Software
Product Line Conference (SPLC 2007), 2007.

[3] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling
Framework. Pearson Education, 2003.

[4] S. L. Card, J. D. Mackinlay, and B. Shneiderman. Readings
in Information Visualization: Using Vision to Think. Morgan
Kaufmann Publishers, 1999.

[5] K. Czarnecki. Overview of Generative Software Develop-
ment. In Proceedings of the Unconventional Programming
Paradigm, volume 3566 of LNCS, pages 326–341. Springer,
2005.

[6] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed
Variants. In R. Glück and M. Lowry, editors, Proceed-
ings of the 4th International Conference on Generative Pro-
gramming and Component Engineering (GPCE’05), vol-
ume 3676 of LNCS, pages 422–437. Springer, 2005.

[7] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming – Methods, Tools, and Applications. Addison-Wesley,
June 2000.

[8] K. Czarnecki and K. Pietroszek. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Con-
straints. In Proceedings of the 5th International Conference
on Generative Programming and Component Engineering
(GPCE’06), pages 211–220, New York, NY, USA, 2006.
ACM.

[9] S. Diehl. Software Visualization. Springer, 2007.
[10] feasiPLe Consortium. feasiPLe Research Project, July 2008.

URL http://feasiple.de.
[11] FeatureMapper Project Team. FeatureMapper, July 2008.

URL http://featuremapper.org.
[12] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper:

Mapping Features to Models. In Companion Proceedings of
the 30th International Conference on Software Engineering
(ICSE’08), pages 943–944, New York, NY, USA, May 2008.
ACM.

[13] F. Heidenreich and C. Wende. Bridging the gap between
features and models. In 2nd Workshop on Aspect-Oriented
Product Line Engineering (AOPLE’07) co-located with the
6th International Conference on Generative Programming

and Component Engineering (GPCE’07). Online Proceed-
ings, 2007. URL http://www.softeng.ox.ac.uk/aople/.

[14] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 1990.

[15] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proceedings of the 30th Inter-
national Conference on Software Engineering (ICSE 2008),
pages 311–320, May 2008.

[16] C. Kästner, S. Trujillo, and S. Apel. Visualizing Software
Product Line Variabilities in Source Code. In Proceedings
of the 2nd International Workshop on Visualisation in Soft-
ware Product Line Engineering (ViSPLE 2008), collocated
with the 12th International Software Product Line Confer-
ence (SPLC 2008), 2008.

[17] D. Nestor, L. O’Malley, A. Quigley, E. Sikora, and S. Thiel.
Visualisation of Variability in Software Product Line Engi-
neering. In Proceedings of the 1st International Workshop
on Variability Modelling of Software-intensive Systems (Va-
MoS 2007), Jan. 2007.

[18] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[19] The Eclipse Foundation. Graphical Editing Framework, July
2008. URL http://www.eclipse.org/gef/.

[20] The Eclipse Foundation. The Eclipse Platform, July 2008.
URL http://www.eclipse.org.

[21] The Topcased Project Team. TOPCASED, July 2008. URL
http://www.topcased.org.


